The complex singularity of a Stokes wave

نویسندگان

  • S. A. Dyachenko
  • P. M. Lushnikov
  • A. O. Korotkevich
چکیده

Two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth can be described by a conformal map of the fluid domain into the complex lower half-plane. Stokes wave is the fully nonlinear gravity wave propagating with the constant velocity. The increase of the scaled wave height H/λ from the linear limit H/λ = 0 to the critical value Hmax/λ marks the transition from the limit of almost linear wave to a strongly nonlinear limiting Stokes wave. Here H is the wave height and λ is the wavelength. We simulated fully nonlinear Euler equations, reformulated in terms of conformal variables, to find Stokes waves for different wave heights. Analyzing spectra of these solutions we found in conformal variables, at each Stokes wave height, the distance vc from the lowest singularity in the upper half-plane to the real line which corresponds to the fluid free surface. We also identified that this singularity is the square-root branch point. The limiting Stokes wave emerges as the singularity reaches the fluid surface. From the analysis of data for vc → 0 we suggest a new power law scaling vc ∝ (Hmax −H) 3/2 as well as new estimate Hmax/λ ≃ 0.1410633.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularities in the complex physical plane for deep water waves

Deep water waves in two-dimensional flow can have curvature singularities on the surface profile, for example, the limiting Stokes wave has a corner of 2π/3 radians and the limiting standing wave momentarily forms a corner of π/2 radians. Much less is known about the possible formation of curvature singularities in general. A novel way of exploring this possibility is to consider the curvature ...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers

In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...

متن کامل

Steep. Short-Crested Waves and Related Phenomena

Steep, short-crested waves, as well as a large variety of three-dimensional propagating wave patterns have been created in laboratory, utilizing a plunging half-cone. Monochromatic waves, over a range of frequencies and amplitudes through breaking and including soliton wave groups near resonance, have been observed and studied in a small wave flume. This monochromatic wavemaker creates complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013